GD_{SERIES} Metal-sheet Double-feed Detector

From Ultra-thin Lead Frames to Iron Sheets... Double Feed Detection of Various Metal Sheets

Double Metal Sheets Reliably Detected

The high-end **GD** sensing technology reliably detects double feeds of any metal sheet 0.01mm, or more, thick.

Easy Sensitivity Setting with Actual Samples

Optimum sensitivity setting is easy by using the teaching function with actual samples.

Three Types of Sensor Heads for Various Objects

Small object detection sensor head/GD-3 High precision sensor head/GD-10 Long sensing range sensor head/GD-20 This is an extremely small sensor It is suitable for high precision It achieves a long sensing range of head, only $\phi 3.8 \times 15$ mm, suitable for detection of double feeds of 70mm. Further, it employs a robust leadframes or thin metal sheets. metal case with IP67 protection to detecting small components. withstand harsh environment. Sensing range 32.2mm 70mm ¢3.8mm 7.1mm

ØSUNX-

ORDER GUIDE

Sensor heads

Туре	Appearance	Sensing range (between sensor heads)	Detectable sheet thickness			Model No.	Applicable controllers	
Small object detection		10mm	Standard see Material Settin Iron (SPCC) Aluminum Copper Brass Stainless steel (SU	nsing g distance (US304)	0.01 to 0.1mm 0.015 to 1mm 0.018 to 1mm 0.03 to 1mm 0.3 to 1mm	20 × 20mm 10mm 0.03 to 0.1mm 0.015 to 1mm 0.018 to 0.3mm 0.03 to 0.5mm 0.3 to 1mm	GD-3	GD-C3
High precision	[][] []	30mm	Standard see Setting dist Appi cont Iron GD- (SPCC) GD- Aluminum GD- Aluminum GD- Brass GD- Brass GD- Stainless steel GD- (SUS304) GD-	nsing ance licable rollers C1/C2 C3 C1/C2 C3 C1/C2 C3 C1/C2 C3 C1/C2 C3 C1/C2 C3 C1/C2 C3	20mm 20mm 0.07 to 1mm 0.01 to 0.3mm 0.03 to 6mm 0.015 to 1mm 0.03 to 6mm 0.03 to 6mm 0.03 to 6mm 0.01 to 1mm 0.03 to 6mm 0.01 to 1mm 0.1 to 6mm 0.1 to 6mm 0.5 to 2mm	30 × 80mm 30mm 0.07 to 0.5mm 0.01 to 0.1mm 0.03 to 2mm 0.015 to 1mm 0.03 to 2mm 0.018 to 1mm 0.03 to 2mm 0.01 to 1mm 0.1 to 2mm 0.1 to 2mm	GD-10	GD-C1 GD-C2 GD-C3
Long sensing range		70mm	Standard sen Material Iron (SPCC) Aluminum Copper Brass Stainless steel (SU	sing ol ng distance	bject size: 20 35mm 0.07 to 10mm 0.03 to 10mm 0.03 to 10mm 0.03 to 10mm 0.1 to 10mm	00 × 200mm 70mm 0.07 to 6mm 0.03 to 6mm 0.03 to 6mm 0.1 to 6mm	GD-20	GD-C1 GD-C2

Note: Only the combinations between the sensor heads and the controllers described in the above table are allowed. Any other combination may damage the connected sensor heads.

Controllers

Туре	Appearance	Model No.
Standard	000	GD-C1
With RS-232C		GD-C2
Small object detection		GD-C3

Make sure to use the sensor heads and the controller together in the above combinations.

I/O CIRCUIT AND WIRING DIAGRAMS

Wiring diagram

of input/output circuitry for noise immunity. However, if you expect to share the power supply with the output loads, connect terminals 2 and 6, terminals 2 and 10, or terminals 2 and 20 to make 0V common.

I/O circuit diagram

Low: 0 to 1V

High: 4.5 to 30V, or open

o

Note: 0V of power supply is isolated from 0V of input/output circuitry. To share the power supply with a load, both the 0V terminals should be short-circuited.

RS-232C wiring diagram (GD-C2 only)

Pin arrangement

External channel select truth table

Input Channel No.	IN-0	IN-1	IN-2
1	L	Н	Н
2	н	L	н
3	L	L	н
4	н	Н	L
5	L	Н	L
6	н	L	L
7	L	L	L
8	Н	н	н

L: Low (0 to 1V), H: High (4.5 to 30V, or open)

WSUNX

PRECAUTIONS FOR PROPER USE

Mounting

Placing of sensor heads

• Make the sender and receiver face each other and align their sensing center line.

- Keep a distance from any magnet or a device generating magnetic field. It may degrade the detectability.
- Surrounding metal influences the detectability. Please contact our office for more details.
- If more than one set of sensor heads are closely mounted, detectability may be affected. Please contact our office for more details.

Mounting sensor heads

<GD-3>

Mounting with set screw

• Use a set screw (M3 or less), and the tightening torque should be 0.12N m or less.

<GD-20> <GD-10> Fixing at one point Fixing at two points M8 mounting M3 (length 12mm) M3 (length 12mm) pan head screw (Accessory for **GD-10**) hole 6mm deep (Accessory for GD-10) Mounting bracket (Accessory for GD-10) Anti-slip rubber washer M3 (length 0.5mm) tapped hole 10mm or more deep or \$3.4mm (Accessory for GD-10) M3 (length 0.5mm) tapped hole 10mm thru-hole 18 screw or more deep or (Please arrange separately.) ø3.4mm thru-hole If mounting using ¢2.5mm If mounting using nut and washers nut and washers 0 ories hole 3mm or Acce for GD-10

• The tightening torque should be 0.5N·m or less.

more deep

 To mount the sensor head with a nut, the thruhole should be \$\$.4mm. (The mounting board must be 2.3mm, or less, thick.)

Mounting of controller

(Accessories) for GD-10

<On DIN rail>

- ① With the stopper pressed in the direction of the arrow (it locks), fit the front portion of the mounting section of the amplifier on the 35mm width DIN rail.
- ② Press and fit the rear portion of the mounting section on the 35mm width DIN rail.
- *To remove, insert a 'minus' screwdriver into the stopper and pull out.

<On board with screws>

 Use two M4 pan head screws 10mm, or more, long. The tightening torque should be 1.2N⋅m or less. Stopper 2 35mm width DIN rail Minus' screwdriver Stopper

less.

• The tightening

torque should

be 11.2N · m or

Distance from nearby metals

• As metals near the sensor head may affect the sensing performance, pay attention to the following points.

Influence of nearby metal

• The sensor head must be separated from nearby metal by a minimum distance as specified in the table below.

<Dimension A (in case of iron)>

Setting distance Model No.	5mm	10mm	30mm	70mm		
GD-3	15mm	20mm ——				
GD-10						
GD-20	100mm					

Embedding in metal

• The sensing performance may be affected if the sensor is completely embedded in a metal.

Keep a minimum clearance between the sensor head and the metal as specified in the table below.

<Dimension B (in case of iron)>

Setting distance Model No.	5mm	10mm	30mm	70mm	
GD-3	¢15mm	¢20mm			
GD-10					
GD-20	¢300mm				

ØSUNX

PRECAUTIONS FOR PROPER USE

Teaching by external input

• The teaching can also be performed by external input signals.

<Time chart>

RUN/SET select input	RUN SET					
SET-1 input	← 50ms or more	High Low				
Answer-back output (ANS. OUT)	1ms or less - CPU process- Teaching successful ing time	High Low				
SET-2 input	→ 50ms or more → 50ms or more	High Low				
Answer-back output (ANS. OUT)	1ms or less - CPU processing time Teaching successful	High Low				

RS-232C data transmission (GD-C2 only)

• **GD-C2** can feed in the set level data into a PC or PLC memory using RS-232C serial communication and retrieve it whenever required. In this case, the taught data should be stored in the prescribed channel.

Transmission specifications

- Baud rate: Selectable from 300, 600, 1,200, 2,400, 4,800, 9,600, 19,200, or 31,250 bits/sec.

Parameter setting

· Set the parameters with the DIP switches on GD-C2.

Switch No.	Parameter	ON				OFF				
1		Bits/sec. Switch No.	300	600	1,200	2,400	4,800	9,600	19,200	31,250
0	Deviduate	1	ON	OFF	ON	OFF	ON	OFF	ON	OFF
	Baud rate	2	ON	ON	OFF	OFF	ON	ON	OFF	OFF
3		3	ON	ON	ON	ON	OFF	OFF	OFF	OFF
4	Data bits	7 bits					8 bits			
5		Enable				None				
6	Parity check	Even					Odd			
7	Stop bits	1 bit			2 bits					
8	Terminal code	CR					ETX			

Command

• All commands used to communicate with **GD-C2** are classified into three groups: write command, read command, and others (ASCII coded data communication).

1 Read command

Syntax: Statement + CR (ETX)

Statement	Usage						
RCH	Read the data of the presently designated channel. Send: [RCH]+[CR (EXT)] Response: RCHXXAAAAOOO+[CR (ETX)]						
RRC Assign the channel and read its data. 1 to 8 Send: RRC 1 to 8 + CR (EXT) Response: RRC1 to 8 - X × AAAA.0000 +							
RAC	Read data of all channels. Send: [RAC] + [CR (ETX]] Response: [RAC] _ X X _ △△△△ _ ○○○ Channel 1 X X _ △△△△ _ ○○○ Channel 2 : X X _ △△△ _ ○○○ + [CR (ETX]) Channel 2 : Channel 8						
RAD	Read only the sensing level data of the present channel. Send: RAD+(CR (ETX)) Response: RAD, 读文文文文 + (CR (ETX)) Sensing level data (Note 1)						
OUT 0	Read the present sensing condition. Send: [OUT 0] + [CR (ETX]] Response: [OUT 0] + [CR (ETX]] Sensing condition (0: Zero-sheet sensing) 1: One-sheet sensing) 2: Two-sheet sensing)						
OUT 1	Read the present sensing level (the number of LEDs which light up). Send: [OUT 1]+[CR (ETX]] Response: [OUT 1] + [CR (ETX]] Sensing level (0 to 7)						
Notes: 1) 2) 3) ② Write Synt	Both the one-sheet level data and the two-sheet level data are represented by decimal numbers from '0 to 4,095'. If the sent command is ineffective, GD-C2 returns 'Not Available.' All characters including send and response statements are based on ASCII code. e command ax: Statement + Numerical data + CR (ETX)						
Statement	Usage						
SCH	Write the data into the channel presently designated. SCHXX						
SRC 1 to 8	Assign the channel and write data into it. The command format is the same as for SCH.						
SAC	Write the data into all channels. SAC Channel 1 Channel 2 Channel 8 + CR (ETX)						

After the write command is sent, [Statement] + [CR (ETX)] is returned by **GD-C2** to confirm the communication.

- Notes: 1) The **GD** series automatically selects the most effective sensing process according to the material and thickness of the object. The process number ranges from '00 to 47' in decimal number system.
 - Both the one-sheet level data and the two-sheet level data are represented by decimal numbers from '0 to 4,095'.
 - 3) The data information, information on the presence of data, the sensing mode, etc., is represented by decimal numbers from '00 to 63'.
 4) If the sent command is ineffective, GD-C2 returns 'Not Available.'
 - 5) All characters including send and response statements are based
 - on ASCII code.

SUNX

PRECAUTIONS FOR PROPER USE

Self-diagnosis (Alarm) function

• The **GD** series diagnoses itself. The result lights up the self-diagnosis indicator, generates the self-diagnosis output, and shows the error code on the channel display as per the following table.

Description		Channel display	Sensing level indicators	Self-diagno- sis indicator (Note)	Self-diagno- sis output (Note)	Countermeasures
On power-ON	Internal circuit failure		Blink	Lights up	OFF	Contact our office.
During operation	Disconnected sender cable		Blink	Lights up	OFF	Check connection of sender cable.
	Operation key pressed for 30 sec. or more	2	Blink	Lights up	OFF	Check keys on panel.
	Too little contrast between one and two sheet levels	Present channel number	_	Lights up for 1 sec.	OFF for 1 sec. (self- restora- tion	Change the setting.
	Selection of channel without stored data	Present channel number	_	Lights up	OFF	Select the channel in which data is stored.
unication (GD-C2 only)	Syntax error	3	Blink 10 times	Lights up	ON	Check RS-232C protocol (baud rate, parity, stop bits, data bits.
During RS-232C comr	Memory overflow		Blink	Lights up	ON	Check if the terminal code is correctly sent.

Note: In the SET mode, the self-diagnosis indicator continuously lights up and the self-diagnosis output stays off.

Response time

• The controllers **GD-C1** and **GD-C2** automatically select the most suitable signal processing method, according to the material and thickness of the sensing object. Depending on the selected signal processing method, the response time is also automatically determined as either '5ms or less', or '30ms or less'.

Further, when controller **GD-C3** is used, the response time is 5ms or less.

The response time of the controllers, **GD-C1** and **GD-C2**, can be confirmed by the following procedure.

- 1) Press '0-ADJ. key' in 'RUN mode'.
- ② The channel display shows an alphanumeric character that represents the response time as given below.

Other than the above

➡ 30ms or less

5ms or less

ALL-LOCK function

• All keys on the operation panel are locked when the channel shift key is pressed for 3 sec. or more (unless CH-SELECT is set on 'PANEL'). To release the lock, press the channel shift key for 3 sec., or more, again.